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This paper considers the surface response of a semi-infinite, uniformly rotating, 
constant depth, homogeneous ocean to a variable atmospheric force. For a 
general wind and pressure system it is shown that forced Kelvin-type waves 
can be generated and that only the longshore wind component and the pressure 
can generate them. In particular a semi-infinite wind and moving pressure pattern 
are shown to generate Kelvin waves that travel away from the force discontinuities 
a t  the speed of shallow-water waves. The waves in the latter case exhibit a 
frequency shift typical of non-dispersive waves from a moving source. Some 
numerical values for the amplitudes of the Kelvin waves are also given. 

1. Introduction 
The generation of long waves by initially applied forces on the surface of a 

uniformly rotating infinite ocean has been theoretically investigated by such 
authors as Crease (1956) and Mysak (1969). Similar investigations for a non- 
uniformly rotating ocean have been carried out by Veronis & Stommel (1956) 
and by Longuet-Higgins (1965) using the P-plane approximation. For the case of 
a semi-infinite ocean Kajiura (1962) considered the possibility of Kelvin-type 
waves being generated at  the boundary. Using a Green’s function approach he 
investigated the surface response to an atmospheric disturbance of rectangular- 
horizontal extent and was able to show that the solution for large distances from 
the source but close to the wall did behave as a Kelvin wave. 

In  this paper we also consider the response of the sea surface to atmospheric 
forces in the presence of an infinite boundary, but instead of a Green’s function 
approach we solve the initial boundary-value problem using transform methods. 
The result is that the response behaves as a forced Kelvin wave and that this 
wave appears as part of the exact solution. Also, we find that only the longshore 
component of the wind-stress and pressure gradient can generate these waves, 
in agreement with Kajiura. 

In  $ 2  a partial differential equation for the forced surface elevation is derived 
from the linearized shallow-water equations. Transform methods are then used 
in $3 to determine the sea surface response to  a general space-time wind-stress 
and pressure in the presence of an infinite boundary. Section 4 is devoted to a 
discussion of that part of the solution which gives rise to Kelvin-type waves. 
These results are used in $05 and 6 for specific examples: (i) a non-travelling 
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divergent longshore wind pattern, and (ii) a moving pressure source, respectively. 
Through the application of a Tauberian theorem, the steady-state response for 
large times is shown in $ 7 to be zero in each case. In $ 8 a physical discussion of the 
results found in $§4 and 5 is given. Finally, in $9 some numerical values for the 
amplitudes and velocities are presented. 

2. Equations of motion 
We consider a homogeneous, uniformly rotating ocean in which non-linearities 

and bottom friction are neglected. Further, we assume that the waves are suffi- 
ciently long for the hydrostatic equation to be valid. Then the vertically integrated 
equations of momentum and mass conservation are: 

in which the hydrostatic equation P = P, +pg([ - x )  has been used, and where 
x, y are horizontal Cartesian co-ordinates, %: is measured vertically upwards, 
t is the time, is the sea-surface elevation, u, v are the velocity components 
along x, y, and h is the mean depth, assumed constant. 9 is the acceleration of 
gravity, f the Coriolis parameter, p the water density, P, the air pressure on the 
sea surface and 75, rg are the components of the wind-stress in the x, y directions. 
Then from (2.1) we obtain 

where N I- /"z + a2/8t2. Using equations (2.3) and (2.4) in (2.2) we obtain 

where 

(Vi-;): = F ,  

F = u  

(2.3) 

(2.5) 

T = ( ~ ~ , r v , O )  and V$ = a2/ax2+a2/ayz. 1 
In  the general analysis of $$3 and 4 we will only require that T and Pa be 

bounded and in particular that they both are zero at  1 yI = 03. 

Our model consists of a semi-infinite ocean of constant depth h, bounded at 
x = 0 by a vertical wall. In  this paper the analysis is carried through for an ocean 
in the half-plane x > 0;  for an ocean in the half-plane x < 0 it is simply a matter of 
substituting x = -x whenever it appears. Also we have assumed f > 0 so that 
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the analysis is for the northern hemisphere; in the southern hemisphere we 
take f c 0. At the wall we require that the normal velocity component (u) 
vanish. 

3. Response to a general wind and pressure field 
' 

We assume that a t  t = 0 a pressure (Pa) and a horizontal wind-stress distri- 
bution begin to quickly build up over the surface, which is initially at rest; 
i.e. 6 = 0 for t < 0. 

We now define the Fourier-Laplace transform of @(z, y, t )  by 

and specify the following conditions: 

(3.2 a-d) I a[/at = 6 = 0 at t G 0,  
<Ml as t++oo; 

acpy, 6 < M2 as 1Y1-f +a; 
pa, aP,/ay, 1 + 0  as t ,  1~l-f +a; 

agpx, c <  M3 as X++CQ;  

where the Mi are finite. 
These conditions will be used to obtain the general transform of 5 as a function 

of Pa and T. 
Since (2 .5)  is a third-order differential equation in time, the Laplace transform 

method requires a knowledge of a2c/at2 at t = 0. In  this paper such initial accelera- 
tions will be zero since atmospheric disturbances will be assumed continuous in 
time. Physically this is the most realistic situation, although mathematically 
there is no difficulty in allowing initial discontinuities for specific cases since they 
simply require the inclusion of the initial acceleration and forces. 

With the above condition, and (3 .2a ,b , c )  equation (2 .5 )  transforms to 

(d2/dz2- k*)C(x, A, s )  = s-lF*(x, A ,  s) ,  (3 .3)  

in which k = (At+ [f2+s2]/c2))t  > 0 for h real, c2 = gh and 

F * ( X , h , S )  = a[d(s(X,h,s) +Sf-'F(X, h,s))/dz+ih(T3c(Z,h,S) - S f - ' S ( X , h , S ) )  

-hf-l(d2/d22-h2)sP7ciz, A,s)].  (3.4) 

The most general solution to (3 .3 )  under condition ( 3.2 d )  is then 

[(z, A, s) = c(A, s)exp( - kz) - &$ /om G,(z\z') F*(z', A,  s) dz', (3.5) 

where G,(xjz') = G(z ( z ' lk )  is the Green's function 

G,(zlz') = exp[-klz-z'I]. (3.6) 

To determine c(A,s) we use the boundary condition u = 0 at z = 0. Taking 
42-2 
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the transform of (2.3), using conditions (3.2a,b,c) and substituting from (3.5) 
and (3.6) we obtain, 

(ihf+ ks)c(h, s) = ih$-sks ___ som exp( - kz’)  F*(x’, A, s) dx’ 

whereby (3.5) becomes, after some manipulation, 

f”s2P.(z,h,s) +ihT,(z,h,s) 1 C ( X ,  A, s) = 
2ksf - 

U zhf + ks 

T,(x, A, s) = exp[ - k ( z  +x’)][(fk - ihs)77d(zf, A, s )  + (ihf + ks)F(z’, A, s)] dz’, 
S O W  

T3(z,h,s) = lom sgn(z-2’) e x p [ - k l z - z ’ l ] [ f ~ ( z ’ , h , s ) + s ~ ( z ‘ , h , s ) ] d x ’ ,  

exp[ - k(x  + x’)] K(d, A, S )  d d ,  

G,(z~x’) P,(x’, A, s) dz’, 

and sgn(4) = + 1  (4  > 0) 

= - 1  (4 < 0). 

(3.9) 

The surface response is then found by taking the inverse, viz. 

m y-im 

4?T% -m y f i m  
((x, y, t )  = 1 exp( - i hy )  d h  1 exp(st)c(z, h, s) ds. (3.10) 

In the s plane y is chosen so that any singularities lie to the left of the inversion 
path (see figure l) ,  while in the h plane the inversion path must be suitably in- 
dented above or below any singularities on the real h axis; the appropriate in- 
dentations being determined by the Sommerfeld radiation condition. 

4. Kelvin-wave solutions 
As seen from expression (3.8), only the first two terms can possibly contribute 

poles in the s and h planes, other than at s = 0, which are not totally attributable 
to the force. Since we are inverting our transform with respect to s first, these 
poles are at s = - ihc and s = - i f  Ihl / A  (since k > 0) as derived from ihf + ks = 0, 
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and thus arise entirely from the wall boundary condition. Similarly, when we 
first evaluate for s-plane poles which arise from the explicit form of the force 
we will obtain poles in the h plane for the zeros of ihf + ksjsj; where ksjsj is evalu- 
ated at  the s-plane poles, sj, of the force. It is these terms which give rise to Kelvin 
waves. 

Im s 
4 

b R e s  

I 

FIGURE 1. Path of integration in the s plane, s = Res+iIms. (---, branch cuts; 
x , singularities). Singularities due to the transform of a particular force are not shown. 

To partly demonstrate the above remarks, without specifying a force, we 
consider the poles at  the zeros of ihf+ ks in the s plane. Let cl(z, y ,  t )  represent 
their contribution to the surface response. Now because the force is assumed 
bounded for all t ,  the poles and/or branch points it contributes in the s plane will 
also lie on or to the left of the imaginary s axis. Thus in this plane we close the 
inversion contour, r, to the right for t < 0 and to the left for t > 0. Hence = 0 
for t < 0. For t > 0 the contribution from the pole at  s = -ihc for the first two 
terms of (3.8) is, using (3.10) and Cauchy ’s residue theorem, 

[,(z, y, t )  = s,” dz’exp [ - Ff (z +.’)I j dhexp[ - ih(y + c t ) l [a ,~(z ‘ ,  A, s) 
-m - 

-a2hP,(x’,h,S)ls=--iAc. (4.1) 

in which a, = -aa/2n and a2 = +iha/2r, (4.2) 

while that from the pole a t  s = - i f  Ihl/h, is zero. It is easily seen that (4.1) 
represents a Kelvin wave in which the wave-number h will be determined by 
the explicit form of the force. 
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5. Response to a non-travelling wind pattern 
In  order to demonstrate the remarks of $ 4  we take as an example a disturbance 

that is stationary in space but transient in time. One such form satisying 
boundary condition ( 3 . 2 ~ )  is 

7 u  = T~ H (  t )  sin wtexp( - at)H(y)exp( -,uuy), 

7% = Pa = 0, 
(5.1) I 

where 7,, = constant, ,u and u are real ( > 0), w is real and H(q)  is the unit step 
function. This forcing field could be regarded as a crude approximation to that 
caused by successive, large onshore moving weather systems in which the pres- 
sure difference between each storm’s centre and edge is small. Then, applying 

w 1 - (3.1) we find 
7-1 = - 

(s + v)2+ w2 in -p ’  

Substituting this into (4.1) we obtain poles a t  A, = -i,u and h, = ( f w-ia) /c .  

FIGURE 2. Plots of the amplitudes of the wind-generated Kelvin waves r(5.3) + (5.5)] 
at fixed longshore position, y = yo < 0, for increasing time t* = w(t+yo/c) ,  for four given 
values of the decay frequency, cr-pc (w f 0). (i) cr = pc = w ;  (ii) cr = t w ,  pc = 20; 
(iii) CT = t w ,  pc = w ;  (iv) c = 20, pc = 4 ~ .  

Evaluation is then a straightforward application of Cauchy’s residue theorem 
provided we conform to the following condition: the contour is closed above for 
y+ct < 0 and below for y +ct > 0. This ensures that integration along the large 
semi-circle of the inversion path vanishes in each case, or, which amounts to  the 
same thing, that any solution be bounded. In the analysis to follow u > 0 to 
avoid having poles on the imaginary s axis, which, depending on whether 
f w ,  could necessitate an inversion contour other than that in figure 1. Equation 
(4.1) then becomes 

!&&, y ,  t )  = A{{cos [ ~ ( y  + c t ) ]  + asin [ ~ ( g  + c t ) ] }  exp[ - m(y + c t ) ]  

- exP[ - A Y  + Ct)I}H(Y + 4, (5.3) 
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where (K ,  m) = c-l(w, a) are horizontal wave-numbers, a = ( B  -pc)/w mid 

A = (T0/pc)w/[w2+ ( a - p ~ ) ~ ] e x p (  -fx/c). (5 .4 )  

Following $ 4  we next evaluate the first term of (3.8) a t  the poles in the s plane 
due to the explicit form of the force, i.e. at  s+ = i iw - B from (5 .2) .  Further 
inversion in the h plane for the poles a t  the zeros of ihf + k3& s+ gives a contribution 
c2" such that 

H(Y) 
W Y  + ct) 

&(X,Y,~)  = -Cip(x,~,t) ___ - A  exp[-p(y+ct)lH(y+ct). (5 .5 )  

It is easily seen that the combination of (5.3) and (5.5) represents a wiiid- 
forced Kelvin wave plus a surge-like term moving away from the forcing region 
(y > 0) with the long wave speed, c; (see figure 2 ) .  

Although it is not the purpose of this paper to investigate all the possible 
long waves generated by a particular disturbance, we will briefly outline their 
general behaviour. If we include all terms of (3.8) we find the following: (i) no 
contribution for the poles at s = 0; (ii) for the poles at s = s+ all terms, excluding 
the first (which gave ( 5 . 5 ) ) )  give aresponse 6, which, using the method of steepest 
descent, can be shown to behave as 

where 
1 To 1 A = - - - -  

(8np pc  (f 2 - W 2 ) t '  
(x, y) = r(cos 8, sin 8 )  and 

(iii) for the poles a t  si the first term has, besides the Kelvin-wave poles, a pole 
a t  h = - ip where for a, ,u + Of the resulting displacement behaves as 

and finally (iv) the branch cut integration for s = +i(h2c2+f2)f (when k = 0) 
gives the following double integral, gbc, at x = 0; 

(5.8) 
where E = roifwc/n2 and p2 = h2c2 + f 2. 

For a + O+ i t  is straightforward to show that (5.8) consists of standing type waves 
of the form, sin (wt) sin (wylc), cos (wy/c) sin (wt), . . . while the use of Laplace's 
method [see Carrier, Krook & Pearson (1966, p. 256) for a description of this 
method] for the branch points of (5.8) yields terms like 

exp( - at) 
C*:ae(O,Y,t) t+ cos (wt )  exp[ - ( f 2 -  w2)+ y/c] + O(t-3). (5.9) 
lim t++ m 
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6.  Response to a moving storm 
As a final example we determine the Kelvin-wave response to  a moving pres- 

sure source, which for simplicity will be represented by a delta function. Later 
in this section we will give some justification for such a pressure distribution. 

X 

\ 

X 

\ 

FIGURE 3. Schematic diagram of the regions occupied by the pressure-generated Kelvin 
waves of $ 6  for a storm moving in the negative y direction: (a) c > V ;  ( b )  c < V .  

We consider the form 

T X  = T Y  = 0, 

Pa = Py2S(y  + Vt)&(x - xo) sin (wt) exp( - crt) ( t  2 0, xo > O), 

where Pa is now the pressure difference, at  sea level, between the centre of the 
storm and the undisturbed pressure far from the disturbance, and in which 
P = constant, V is the speed of the storm, xo is the distance from the coast, w, 
v ( > 0 )  are real and y is a measure of the storm’s width [we again retain v > 0 
so that the inversion contour in the s plane has the form of figure 11. Then using 
(3.1) we find 

(6.2) 
0 pa = Py2S(x - xo) (s + CT + iAV)2+ w2’ 

which substituted into (4.1) yields poles at A, = ( rf: w + ig)/( V - c). From residue 
theory and the requirement that the solution, I&,, obtained from these poles be 
bounded everywhere, we find 

(6.3) [ip(x, Y7 t )  = 5 cp(x7 Y7 t )  ff[ rf: (Y + cf)], 
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x (~os[~(y+ct)]  +asin[~(yfct)]}, (6.4) 

a = r / w ,  ( q m )  = ( w ,  a)/( V-c) and where we use + for c > V ,  - for c < V .  

- 1 

8 

FIGURE 4. Plot of the amplitudes of the pressuro-generated Kelvin waves with respect to : 
(a) the leading edge (c  > V ) ,  and (b )  the trailing edge (V > c), for various values of u: 
(i) cr = &w; (ii) cr = +w; (iii) u = 2w. The edge for y = - Vt is not shown; Sxing it on 
the figure determines ot. 

As in the previous example we next evaluate the first term of (3.8) at the poles 
in the s plane due to the force, (6.2). These poles, at  .s+ = -i(AVk w )  - v, con- 
tribute a response Czp, in which 

C& Y, t )  = * ( - ) CJG Y, W[ k (Y + Wl (6.5) 

with k having the same meaning as in (6.4). The Kelvin-wave response, C,,., 
formed from the sum of (6.3) and (6.5) is given by 

C,,.(GY,t) = CP(X,Y,t){H[f  (Y+ct)l--HC* ( Y +  W}sgn(c- V ) .  (6.6) 

As seen from figures 3 (a) and (b ) ,  c,,. as given by (6 .6)  occupies two distinct long- 
shore regions with respect to the storm, depending on the sign of c - V .  For c > V 
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the Kelvin waves move away from the storm region at group velocity c,  and at  
wave-number K = w/(c- V ) .  For c < V there is a Kelvin-wave ‘wake) travelling 
in the storm direction. If we transform V -f - V ,  to give a storm moving in the 
positive y direction, we find a Kelvin wave in the region - ct < y < Vt. Figures 
4(a )  and (b )  are plots of these Kelvin-wave solutions for various values of a/@ 
for the cases V < c and V > c respectively. The co-ordinates are fixed at y = - ct 
with the edge y = - Vt not shown, in order to show the full wave development. 
If we choose the position of this edge, then y*, at y = - Vt,  becomes y* = -wt 
so that t is determined for each w .  This also fixes the region occupied by the wave 
whose leading or trailing edge ( V  > c or V < c) decays at  the same rate as the 
amplitude of the storm. 

In the present theory we interpret: (i) the delta function as the limit of a 
Gaussian pressure distribution, viz. 

1 
6(z )  = lim - exp( -zZ/c2) 

e-+O + E d  

and (ii) y = Y ( E )  to be much larger than the wavelength of gravity waves but 
still much smaller than the characteristic horizontal wave scales ( c / f ,  K - ~ ) .  

For example, if in (6.1) we had started with a Gaussian distribution in the 
x direction, centred about xo, we would have obtained an x dependence for &, 
of (6.4) as 

$(4 exp[ -Ax + Xo)/Cl exP[(fE/c)21 4P + erf(b/dl, ( 6.8) 

where erf(q) is the error function and b = ~ ( 2 x 0 - f e 2 / c ) .  In the limit €-+Of, 
c,,(x) --f exp[ - f ( x  + zo)/c] ,  xo > 0, as required. 

km-1) e 
(or y )  need not be too small before (6.8) is closely approximated by the first term 
only, hence justifying the use of the delta function to  represent a storm of finite 
width. To demonstrate these remarks we note that if b / ~  = 2 then the 
erf(2) = 0.995.. . , which for E N O( lo2 km) also implies that exp[(f~/c)~] N 1-22. .  . . 
We note further that b/E N xO/c for the above value of E ,  which in turn implies 
that xo = 2e represents a storm of Gaussian thickness E centred offshore at  a 
distance of about 200km. 

Of some interest is the case V - t c  for a storm moving in the negative y direc- 
tion. This limit must be applied with care, however, since in modelling the storm 
we have assumed y-l much larger than the horizontal wave-numbers ( ~ , m ) .  
The result of applying V - t c  for finite m i s  that there will be a large surface dis- 
continuity at  the leading (trailing) edge y = - ct for c > V(c < V ) .  Immediately 
behind (in front), y + c t  > 0 (y+ct < 0 ) ,  the surface will decay rapidly to zero. 
Finally, in the limit V = c there will he no waves, as expected, since this also 
implies w = 0. 

We omit any discussion of the remaining pressure terms of (3.8) except to 
point out that the last term corresponds to the direct surface response to the 
force. 

Also, it should be noted that sinwt was used in the preceding examples 
to determine the effect of a time-variable force amplitude. If we consider that 

The important point here, however, is that since f / c  is small ( - 
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the atmospheric force, and resulting long-wave sea surface response, can be 
Fourier analyzed into a sum of sine and cosine components, we could regard the 
chosen forcing fields as representing one component of the Fourier expansioiis. 
In  the absence of an oscillatory forcing field, the response becomes simply a 
moving Kelvin-type 'surge '. 

7. Steady-state solutions 
As a result of the awkward integrals that arise when attempting to evaluate 

the full surface response it is desirable to know the response in the limit t -+ + co 
(the steady-state: solution) without having to approximate the integrals individu- 
ally. To this end we use the final value theorem, 

lim a x ,  y, t )  = ax ,  y )  = lim s - w x x ,  y, t)l (7.1) 
t++m s+o + 

(where 9 is the Laplace transform) provided c (x ,  y, t )  is a piecewise continuous 
function for t 2 0 and has a limit as t -+ + 00, s approaching 0' through real values. 
Application of the above limit to 

-w& y, t)l = 9-1"@, A, 41 (7.2) 

in which 9-1 is the inverse Fourier transform, for the examples chosen in 
S Q  5 and 6, shows that in each case 

lim c(x,y, t )  = 0; 
t++m 

the surface returns to its original state of rest. 

8. Physical discussion of the solutions rk 
In this section we will give a physical interpretation to the Kelvin-wave 

solutions obtained in the previous sections. 
When a wind is suddenly applied to one-half of the bounded sea, there is 

immediate motion in the direction of the stress. The discontinuity at  the boundary 
of the generating area will then begin to move away at group velocity (gh)* and 
to be effected by the rotational forces. Such forces will tend to turn motions to 
the right (left) of their direction of propagation in the northern (southern) 
hemisphere. The requirement of zero normal velocity at  the wall, however, 
restricts the formation of a transverse motion outside the forcing region. As a 
result, for motions having the boundary to the right of their direction of pro- 
pagation, a surface slope must exist to balance the Coriolis force. No Kelvin waves 
can exist in the generating region for the case considered; forced waves in this 
region, however, have their wave-numbers modified by the rotational effects 
[(5.6)-(5.9)]. The original y dependence of the stress is felt through the propagat- 
ing surge given by the last term of (5.5). 

For the case of pressure-generated Kelvin waves, we base the discussion on 
the result obtained in 9 6 in which we considered the x dependence of the atmos- 
pheric pressure as a limit of a Gaussian distribution. Since the storm's influence 
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would extend to the boundary, any long wave motion set up by the force will 
have its onshore velocity component restricted by the wall. The Coriolis force 
will again be balanced by a sloping sea surface as in the first example. But now, 
because of the smallness of the atmospheric pressure gradient at the coast for 
storms fa.r offshore (i.e. large xo) as compared to those near the coast, the slope 
of the sea surface need not be as large to give a balance. This is clearly manifested 
in (6.4) by the weighting function exp( -fq,/c). The direct dependence of the 
amplitude of (6.4) on f shows that these waves are a direct result of the rotation 
and are not a modification of a surge as in the wind-stress example. Finally, the 
change of the natural frequencies of the storm (a, w )  to (a, w)/( V & c )  in the Kelvin 
waves is the common ‘Doppler ’ effect for waves generated by a moving source. 

9. Numerical values for the Oregon coast 
One appropriate region for a numerical discussion of the amplitudes and velo- 

cities of the wind- and pressure-generated Kelvin waves is the Oregon coast of 
the United States. This straight, north-south running coast approximates the 
wall of the mathematical model, with the north-south wind component being 
dominant and the offshore movement of relatively small storms being common, 
especially in the winter. Also, numerous tide gauges afford the possibility of 
detecting these waves through the analysis of simultaneous sea level records. 

An important feature of any real ocean, however, as opposed to the constant 
depth model, is the existence of a continental shelf and slope between the coast 
and the ocean basin. The added complications due to such rapid topographic 
change might be enough to obscure the Kelvin waves generated. 

TABLE 1. Kelvin wave amplitude A at 1: = 0. -rO = 1 dync/cm2; p = 1 g/cm3; 
g= 103 cm/secz; h = 2000 m; w = 0.12 x scc-l. 

In table 1 the maximum amplitudes, A ,  of the wind-generated Kelvin waves 
of 3 5 are presented for the various values of ( r ~  -,uc)/w used in the plots of figure 2; 
A is given by (5.4). The calculations are for 70 = 1 dyne/cm2 and w = O-l2(lO-4) 
sec-l (day-l) only, since A is directly proportional to T~ and inversely proportional 
to w(  $: 0). As an example of the magnitude and variability of the northward wind- 
stress off Oregon, data obtained by Oregon State University for the period 
1 Aug. to 31 Sept. 1966 are presented in figure 5 (Mooers et al. 1968). These data 
seem to indicate the presence of a dominant period in the longshore wind-stress 
component during the time of observation, thus partly justifying the use of 
the model chosen in (5.1). Also, the period appears to be roughly 27r days, corre- 
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sponding to the value of w used above. The familiar experimental law r = c'pa U2, 

where c' = 2.~5(10-~) is the drag coefficient and pa = 1*27(10-3) g/cm3 is the 
density of air, has been used to obtain the stress from the mean wind speed U .  

I I I I I  I I I I 

Aug. 
Time (days) 

from 1 Aug. to 31 Sept. 1966. 
FIGURE 5. Daily northward wind-stress off the Oregon coast 

The maximum coastal amplitude, A*, of the pressure generated Kelvin 
waves of $ 6  are given in table 2; A* = P[y"fw/( V - ~ ) ~ p g ]  exp( -fz,,/c). We 
consider V < c only, since for typical storms V is usually less than 40 km/h, 
while for an ocean depth of 2000m, c = (gh)* = 504 km/h. Also, we will take 

y (km) V (km/h) zo (km) A* (om) 
100 40 100 0.4( 10-l) 
200 100 100 0.2 
100 40 1000 0.1 ( 10-1) 

1000 40 1000 2.0 

TABLE 2. Kelvin wave amplitudes A* at z = 0. P = 50 x los dynes/cm2; 
f = 1.03 x lo-* sec-l; p = 1 g/cm3; h = 2000 m; o = 0.12 x 10-4 see-l. 

P = 50 mb = 50( lo3) dynes/cm2 as representative of an intense storm having a 
Gaussian thickness y. As for table 1 only w = O*l2( see-l will be considered 
since A* is directs proportional to w. As might be expected, the amplitudes of 
the pressure-generated waves are much less than those generated by the wind. 
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